My master thesis

Scalable solving of boundary element methods utilizing the Green cross approximation method and GPUs

This project is maintained by Bennet Carstensen

Documentation

greencross.h File Reference
#include "curve2d.h"
#include "h2matrix.h"
#include "surface3d.h"

Go to the source code of this file.

Data Structures

struct  _greencross
 Main container object for performing the Green cross approximation method. More...
 

Typedefs

typedef struct _greencross greencross
 greencross is just an abbreviation for the struct _greencross. More...
 
typedef greencrosspgreencross
 Pointer to a greencross object. More...
 
typedef const greencrosspcgreencross
 Pointer to a constant greencross object. More...
 

Functions

HEADER_PREFIX void init_greencross (pgreencross gc, uint dim)
 Initilize components related to the dimension of the problem and zero initializes all other components of the given greencross object gc. More...
 
HEADER_PREFIX void uninit_greencross (pgreencross gc)
 Uninitilize a greencross object. More...
 
HEADER_PREFIX pgreencross new_laplace2d_greencross (pcurve2d c2d, uint res, void *eta, uint q, uint m)
 Prepares a greencross object for approximating the integral equation \( \int\limits_{\Omega} -\frac{1}{2 \pi} \log{\left \Vert x - y \right \Vert_2} u(y) dy = f(x) \), where \(\Omega \subset \mathbb{R}^2 \). More...
 
HEADER_PREFIX void del_greencross (pgreencross gc)
 Free memory and set pointer to NULL of the corresponding _greencross greencross object gc. More...
 
HEADER_PREFIX void nearfield_greencross (pcgreencross gc, const uint rsize, const uint *ridx, const uint csize, const uint *cidx, pamatrix G)
 Constructs the matrix resulting from the Galerkin discretization of a variational formulation described in gc. More...
 
HEADER_PREFIX void fill_green_left_greencross (pcgreencross gc, pccluster t, pamatrix A)
 
HEADER_PREFIX void fill_green_right_greencross (pcgreencross gc, pccluster t, pccluster s, pamatrix B)
 
HEADER_PREFIX void green_cross_approximation (pcgreencross gc, ph2matrix H2)
 Constructs a Green cross approximation of a problem given by a greencross, represented as an \(\mathcal{H}^{2}\)-Matrix [1]. More...
 

Variables

const uint greencross_min_dim = 2
 
const uint greencross_max_dim = 3
 

Detailed Description

Author
Bennet Carstensen
Date
2017